Varieties of Null-Filiform Leibniz Algebras Under the Action of Hopf Algebras
نویسندگان
چکیده
Abstract Let L be an n -dimensional null-filiform Leibniz algebra over a field K . We consider finite dimensional cocommutative Hopf or Taft H and we describe the -actions on Moreover provide set of -identities description S -module structure relatively free
منابع مشابه
Naturally graded quasi-filiform Leibniz algebras
The classification of naturally graded quasi-filiform Lie algebras is known; they have the characteristic sequence (n − 2, 1, 1) where n is the dimension of the algebra. In the present paper we deal with naturally graded quasi-filiform non-Lie–Leibniz algebras which are described by the characteristic sequence C(L) = (n − 2, 1, 1) or C(L) = (n − 2, 2). The first case has been studied in [Camach...
متن کاملamenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولOn Low-Dimensional Filiform Leibniz Algebras and Their Invariants
The paper deals with the complete classification of a subclass of complex filiform Leibniz algebras in dimensions 5 and 6. This subclass arises from the naturally graded filiform Lie algebras. We give a complete list of algebras. In parametric families cases, the corresponding orbit functions (invariants) are given. In discrete orbits case, we show a representative of the orbits. 2010 Mathemati...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebras and Representation Theory
سال: 2021
ISSN: ['1386-923X', '1572-9079']
DOI: https://doi.org/10.1007/s10468-021-10105-2